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A finite element code based on the level-set method is used to perform direct numerical
simulations (DNS) of the transient and steady-state motion of bubbles rising in a
viscoelastic liquid modelled by the Oldroyd-B constitutive equation. The role of the
governing dimensionless parameters, the capillary number (Ca), the Deborah number
(De) and the polymer concentration parameter c, in both the rising speed and the
deformation of the bubbles is studied. Simulations show that there exists a critical
bubble volume at which there is a sharp increase in the terminal velocity with
increasing bubble volume, similar to the behaviour observed in experiments, and that
the shape of both the bubble and its wake structure changes fundamentally at that
critical volume value. The bubbles with volumes smaller than the critical volume are
prolate shaped while those with volumes larger than the critical volume have cusp-like
trailing ends. In the latter situation, we show that there is a net force in the upward
direction because the surface tension no longer integrates to zero. In addition, the
structure of the wake of a bubble with a volume smaller than the critical volume is
similar to that of a bubble rising in a Newtonian fluid, whereas the wake structure of a
bubble with a volume larger than the critical value is strikingly different. Specifically,
in addition to the vortex ring located at the equator of the bubble similar to the one
present for a Newtonian fluid, a vortex ring is also present in the wake of a larger
bubble, with a circulation of opposite sign, thus corresponding to the formation of
a negative wake. This not only coincides with the appearance of a cusp-like trailing
end of the rising bubble but also propels the bubble, the direction of the fluid velocity
behind the bubble being in the opposite direction to that of the bubble. These DNS
results are in agreement with experiments.

1. Introduction
The motion of a bubble rising in a viscoelastic fluid is one of the classical

research problems in the field of non-Newtonian fluid mechanics. From a fundamental
viewpoint, this problem is interesting due to (i) the presence of a negative wake at
the trailing edge, (ii) the loss of fore–aft symmetry due to the formation of a cusp-
shaped trailing end and (iii) an apparent discontinuity in the steady-state velocity as
a function of the bubble volume.

It is known that for certain parameter values the wake behind a bubble rising in a
viscoelastic fluid can be negative. The wake is called ‘negative’ because the velocity in
the wake (see figure 1) very close to the trailing end is in the direction of the motion
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Figure 1. Sketch of the velocity vectors in the wake of a bubble rising in a viscoelastic fluid.
In the shaded region directly below the trailing end and close to the vertical axis of the rising
bubble, the velocity vectors are in the direction of the motion of the bubble. Slightly further
away from the trailing end, the velocity is in the opposite direction. Hence, the wake is said to
be negative.

of the bubble, but slightly further away from the trailing end the velocity reverses
direction. For a bubble rising in a Newtonian liquid, the wake is normal, in that the
velocity in the wake is in the same direction as the motion of the bubble, causing an
additional drag force opposed to the motion of the bubble.

Hassagar (1979) was the first to observe this behaviour and coined the term negative
wake. Negative wakes are also observed for spheres falling in viscoelastic liquids (see
Arigo & McKinley 2001 and references therein).

Funfschilling & Li (2001) used particle image velocimetry (PIV) and Bisgaard
(1983) laser Doppler anemometry (LDA) to investigate the detailed flow field behind
rising bubbles in viscoelastic liquids. From their PIV images, Funfschilling & Li (2001)
noted the presence of three distinct zones around a rising bubble: a central downward
flow zone behind the bubble or negative wake, a conical upward flow surrounding
the negative wake zone and an upward flow zone in front of the bubble. Bisgaard
(1983) analysed the flow around a rising bubble and a falling sphere, and observed
that the negative wake is much closer to the trailing end of a bubble than it is to the
trailing end of a solid sphere.

The second interesting feature of a bubble rising in a viscoelastic fluid is that there
is a critical bubble volume above which the bubble develops a cusp-shaped trailing
end. Philippoff (1937) was the first to notice this phenomenon (also see Rodrigue,
Chhabra & Fong 1998, and references listed therein). Liu, Liao & Joseph (1995)
performed experiments for bubbles rising in viscoelastic fluids, inside columns of
different cross-sections and found that the bubble trailing end is not axisymmetric.
Specifically, when the bubble is viewed from the side a cusp can be observed in the
wide window and a broad trailing edge appears in the narrow window. A bubble with
volume smaller than the critical value assumes either a prolate or an oblate shape
depending on the Reynolds number.

Astarita & Apuzzo (1965) noted that, in addition to the aforementioned shape
change, “the steady state velocity-volume curve in highly elastic liquids shows a
striking peculiarity: a critical volume exists corresponding to an abrupt increase in the
velocity”. They studied terminal velocities of bubbles rising in four different liquids:
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aqueous solutions of carbopol which is a purely viscous and highly pseudoplastic
liquid, aqueous solutions of carboxy methyl cellulose-CMC which is slightly elastic,
an aqueous solution of ET497 which is highly elastic, and an aqueous solution of
J100, a fluid rheologically similar to ET497. The gas bubbles rising in viscous carbopol
and slightly elastic CMC solutions deform from a spherical to an oblate ellipsoidal
shape and then to a spherical cap with increasing volume, in a manner qualitatively
similar to the deformation of bubbles rising in Newtonian liquids. Bubbles rising in
highly elastic liquids (i.e. those containing ET497 or J100) deform from spherical
to prolate shapes with marked cusp-shaped trailing edges for increasing volume.
Moreover, at a critical volume vc, there is an abrupt increase in the rise velocity,
which varies between 2.2 to 5.86 times the velocity before the onset of the increase,
depending on the percentage of polymer added to the solution. They further noted
that “The shape of the bubble also undergoes a transition at vc, although not very
marked at critical volume when v < vc, although the rear pole is cuspidal, the whole
bubble surface appears to be convex. In contrast to this, when v > vc, the protruding
tip at the rear pole is more marked and the bubble surface appears to be concave
along an horizontal circle slightly above the protruding tip”. They explained that this
abrupt increase in the velocity is due to the transition from the Stokes regime† to
the Hadamard regime.† They suggested that the discontinuity in the rise velocity is
due to the presence of surface-active impurities that immobilize small bubbles. Since
a similar transition in Newtonian liquid is not accompanied by an abrupt increase in
rise velocity, they concluded that viscoelasticity is responsible for this transition. It
was shown that for a Newtonian fluid the terminal velocities in the two regimes differ
by a factor of 1.5.

Following the work of Astarita & Apuzzo (1965), several researchers investigated
this phenomenon experimentally: Barnett, Humphrey & Litt (1966), Calderbank et al.
(1970) and Leal, Skoog & Acrivos (1971) compared the terminal velocities for rising
bubbles and falling glass spheres in a Separan-AP30 solution ranging in concentration
from 0.04 % to 1 % by weight. The density of the sphere was chosen to match the
terminal rise velocity of an air bubble. Since they did not observe any jump in the
velocity of the sphere, they concluded that the observed velocity discontinuity for a
bubble at the critical volume is due to a change in the boundary condition at the
interface from no-slip to shear free. They also analysed the relative importance of
the contributions of shear-dependent viscosity and viscoelasticity to the discontinuity
and suggested that a “relatively modest elastic contribution to force balance at the
interface would be sufficient to explain the experimentally observed discontinuity”.

Liu et al. (1995) proposed an alternative explanation for the discontinuity in the rise
velocity at the critical volume for bubbles rising in a 1.5% aqueous polyox solution
inside channels with rectangular, square and circular cross-sections. They argued that
the jump in the rise velocity is due to a reduction in the drag, which occurs due to a
change in the bubble shape. They noticed that the bubbles below the critical volume
were prolate and those above the critical volume were pointed with a cusp-like trailing
end. A few years later, Belmonte (2000) observed experimentally that the discontinuity
in the velocity–volume plot occurred at the same volume at which the cusp appeared
for a bubble rising in a standard weakly elastic power-law fluid.

† According to Astarita & Apuzzo (1965), “A gas bubble moves in the Stokes regime when the
liquid is in creeping flow, the bubble is spherical, and the interface is rigid. A gas bubble moves in
the Hadamard regime when the liquid is in creeping flow, the bubble is spherical, and the interface
is free”.
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Name Magnitude of jump Conclusions

Astarita & Apuzzo (1965) ∼6 Discontinuity is due to transition from Stokes to
Hadamard regime

Liu et al. (1995) ∼10 Discontinuity is due to a sharp reduction
in the drag due to cusping

Belmonte (2000) ∼4 Discontinuity coincides with cusp formation
Herrera-Velarde et al. (2003) ∼2.4 Only for bubbles with volumes greater

than the critical volume was the negative wake
observed; discontinuity is due to the presence
of a negative wake

Table 1. Summary of the magnitude of the jump in the terminal velocity of a rising bubble
and the reasons given for the jump.

Wagner, Giraud & Scott (2002) developed a two-dimensional lattice-Boltzmann
scheme for a convected Jeffreys constitutive model for two-phase flows and used this
method to simulate bubbles rising in viscoelastic fluids. Although they were able to
reproduce the cusp-shaped trailing ends, they did not observe a jump in the magnitude
of the velocity as observed in the experiments conducted by Liu et al. (1995). Based
on their results, they concluded that “the discontinuity observed in experiments was
due to the presence of impurities or surfactant molecules that were absent in their
numerical simulation”.

Herrera-Velarde et al. (2003) analysed the flow around bubbles using particle image
velocimetry (PIV) for bubbles with a volume close to the critical volume at which
the discontinuous change in rise velocity occurs. They reported that when the bubble
volume is smaller than the critical volume, the flow resembles that of a bubble rising
in a Newtonian fluid, i.e. the velocity in the wake of the rising bubble is positive.
For bubbles with volumes greater than the critical volume, they observed a markedly
modified velocity distribution and a negative wake.

The presence of surface-active agents affects the surface tension and, consequently,
the rise velocity and the jump in velocity at a certain critical volume. Rodrigue,
Chhabra & Chan Man Fong (1996) experimentally investigated the effects of
surfactants on the velocity of a bubble rising in a viscoelastic fluid. They analysed
the effects of various concentrations of sodium dodecyl sulphate (SDS), an ionic
surfactant, on four different viscoelastic fluids: 1 mass% CMC, 1 mass% gellan gum
(GEL) in distilled water, 3 mass% polyethylene oxide, and ployacrylamide AP-237
(concentration varying between 0.075 and 0.25). They concluded that surface-active
agents and elastic forces must be simultaneously present in order to modify the
surface and generate a sudden jump in the bubble rise velocity.

A summary of published results concerning the discontinuous jump at the critical
volume, which is defined to be the ratio of the velocities after and before the jump,
is presented in table 1.

In the past few years, considerable advances have been made in understanding
the transient motion and the presence of a negative wake behind spheres falling in
viscoelastic liquids. Detailed numerical simulations as well as experimental results
and elegant explanations have been reported for the falling sphere problem. A review
of the articles published on the settling sphere problem can be found in McKinley
(2001). The transient motion of a bubble rising in a viscoelastic fluid, however, has
not been investigated as intensively as that of a falling sphere.
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Handzy & Belmonte (2003) analysed the transient oscillatory motion of air bubbles
rising in a micellar system consisting of an aqueous solution of cetylpyridinium
chloride (CPCl) and sodium salicylate (NaSal). For a fixed ratio of [NaSal]/[CPCl]
and concentrations from 4 to 40 mM, they analysed the transient behaviour of bubbles
with volumes ranging from 14 mm3 to 110 mm3 in cylindrical tanks. They observed
that when the concentration of [NaSal]/[CPCl] is between 5 mM and 15 mM, bubbles
form cusp-shaped tails which lengthen as the bubbles rise, during which the velocity
of the leading end remains constant. However, the tail suddenly retracts, and the
bubble jumps upward and then decelerates to a constant velocity. These oscillations
in the rise velocity persist for a rise distance of over 1 m. For higher concentrations
between 25 mM and 40 mM, the shape of the entire bubble changes, in contrast
to the lower concentrations where only the tail shape changes. Additionally, for
intermediate concentrations, no oscillations were observed. They noted that since
falling spheres also oscillate (Jayaraman & Belmonte 2003 and Chen & Rothstein
2004) in wormlike micellar fluids, it was unlikely that the surface tension played a
role in bubble oscillations, and that “the common aspect to all these oscillations is
the non permanence of the macromolecular structures which are responsible for the
fluid stress and therefore the drag”.

The objective of this paper is to use the DNS approach to study the problem of
a Newtonian bubble rising in an Oldroyd-B liquid with constant viscosity, and thus
our numerical results are applicable only to those physical experiments in which it is
appropriate to model the viscoelastic liquid by the Oldroyd-B constitutive equation.
This, for example, is the case for the experiments described in Astarita & Apuzzo
(1965) and Liu et al. (1995) that were conducted using polymeric liquids with flexible
macromolecular chains, except that these fluids are shear thinning. We also note that
the Oldroyd-B constitutive model has been used in several past numerical studies
to investigate the problem of a sphere sedimenting in a viscoelastic liquid, which is
similar to the problem of a rising bubble, except that the bubble’s motion is against
gravity (King & Walters 1972; Arigo & McKinley 1998; Singh & Joseph 2000; Singh
et al. 2000). These studies have shown that the Oldroyd-B model correctly predicts
the qualitative features, as observed in experiments, of the flow around a sedimenting
sphere, including the existence of a negative wake for certain parameter values, and
thus the use of that model to study the problem of a rising bubble is likely to be
appropriate as well.

While the rise of a bubble in a viscoelastic fluid has been analysed via
two-dimensional numerical simulations in the past (Wagner et al. 2002 and
references therein), a three-dimensional analysis is necessary to fully understand
this asymmetrical problem. In this paper we use the three-dimensional code described
in Pillapakkam & Singh (2001) to study the rise of a Newtonian bubble in an
Oldroyd-B fluid and analyse the transient and steady-state velocity as a function of
the rheological parameters of the ambient fluid and the bubble volume.

The outline of this paper is as follows. The governing equations and dimensionless
parameters are stated in the next section, which is followed by a brief description
of the numerical approach. In § 5, the simulation results are presented and the
role played by the viscoelastic parameters in the shape of the bubble, the velocity
field in the vicinity of the rising bubble, and the magnitude of the jump in
bubble rise velocity at the critical value of the bubble volume are investigated.
The presence of the negative wake, the position of the vortex ring downstream
of the bubble, and the stresses near the trailing end of the bubble are also
investigated.
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Figure 2. Sketch of the three-dimensional computational domain with rectangular
cross-section.

2. Problem description and governing equations
Let us consider a fluid bubble, with viscosity ηb and density ρb , placed in an ambient

fluid with zero shear viscosity ηo and density ρo . The ambient fluid will be referred
to as the matrix fluid. The bubble is assumed to be immiscible with the matrix fluid.
If the densities of the bubble and the matrix fluid are equal, in the absence of an
imposed flow the bubble assumes a spherical shape due to the interfacial tension
force. If the density of the bubble is smaller than that of the matrix fluid, the bubble
will rise due to the buoyancy effect (see figure 2).

In our simulations the motion of the bubble is buoyancy driven and there is no
externally imposed velocity field. The bubble, immiscible with the bulk fluid, rises in
the bulk fluid due to differences in densities. We analyse the transient and steady-state
velocity of a Newtonian bubble rising from a state of rest in a viscoelastic liquid in
domains with square and rectangular cross-sections (see figure 2). The viscoelastic
fluid is modelled using the Oldroyd-B model.

Let us denote the domain containing the viscoelastic liquid and the bubble by Ω ,
and the domain boundary by Γ . The governing equations for the two-fluid system
are

∇ · u = 0, (1)

ρ

[
∂u
∂t

+ u · ∇u
]

= ρg − ∇p + ∇ ·
(

ηs

c

λr

A

)
+ ∇ · (2ηsD) + γ κδ(φ)n, (2)

u = 0 on Γ, (3)

so that the domain is a box surrounded by solid walls on which the no-slip boundary
condition applies. In order to avoid the effect of the presence of the wall at the top
of the domain, the simulations will be stopped when the bubble reaches a constant
velocity or when its velocity begins to decrease due to the proximity of the top surface.

The evolution of the configuration tensor A is given by

∂A

∂t
+ u · ∇A = A · ∇u + ∇uT · A − 1

λr

(A − I), (4)

where u is the velocity, p is the pressure, ηs is the solvent viscosity, ρ is the density, D
is the symmetric part of the velocity gradient tensor, c is the polymer concentration
parameter, λr is the relaxation time of the viscoelastic fluid, λr/(1 + c) is the retardation
time, n is the outward normal, γ is the surface tension, κ is the surface curvature,
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φ is the level-set function defined to be the distance from the interface and δ is the
delta function. The zero shear viscosity ηo = ηs + ηp , where ηs is the solvent viscosity
and ηp = cηs is the polymer contribution to viscosity.

The interface position is tracked by using the level-set method (see Sussman,
Smereka & Osher 1994 and Pillapakkam & Singh 2001, and references therein). The
key idea in this method is to define a scalar variable φ, which is equal to the distance
from the interface, and convect it with the local velocity, i.e.

∂φ

∂t
+ u · ∇φ = 0.

3. Dimentionless parameters
The governing equations (1)–(4) are non-dimensionalized by assuming that the

characteristic length, time, velocity, pressure and stress scales are a, a/U , U , ρU 2

and ρU 2, respectively. Here U is the volume-averaged velocity of the bubble and
a is the radius of the undeformed bubble. Using the same symbols to denote the
dimensionless variables, the dimensionless equations can be written in the form[

∂u
∂t

+ u · ∇u
]

=
g
Fr

− ∇p +
ηs

ηo

1

De

1

Re
∇ · (cA) +

ηs

ηo

1

Re
∇ · (2D) +

1

Re

1

Ca
κδ(φ)n, (5)

∇ · u = 0, (6)

∂A

∂t
+ u · ∇A = A · ∇u + ∇uT · A − 1

De
(A − I). (7)

The above equations contain the following dimensional parameters: the Deborah
number De = Uλr/a, which is a dimensionless measure of the relaxation time, the
Reynolds number Re = ρUa/ηo, which is the ratio of inertial and viscous forces, the
capillary number Ca = Uηo/γ , which is the ratio of viscous and surface tension forces,
and the Froude number Fr = U/

√
ga, which is the ratio of inertial and gravitational

forces. Another useful parameter which gives the relative importance of the inertial
and the surface tension forces is the Weber number, We = Re Ca , or product of the
Reynolds and capillary numbers. Two other important parameters are the viscosity
ratio ηo/ηb, and the density ratio ρo/ρb, both of which in this study are assumed to
be 10.

4. Numerical scheme
A numerical scheme based on the finite element method, described in Pillapakkam &

Singh (2001), is used for solving the time-dependent problem for the motion of a
bubble. In this method the governing equations are solved simultaneously everywhere,
i.e. both inside and outside the drops/bubbles in the domain. The finite element scheme
uses the Marchuk–Yanenko operator-splitting technique to decouple the difficulties
associated with the incompressibility constraint, the nonlinear convection term, the
interface motion, and the viscoelastic term (Marchuk 1990; Glowinski et al. 1999;
Singh et al. 2000).

Detailed numerical techniques for solving these four sub-problems are described in
Pillapakkam & Singh (2001). Here, we will simply note that the operator splitting
scheme gives rise to the following four sub-problems: a Stokes-like problem for the
velocity and pressure; a nonlinear convection–diffusion problem for the velocity;
an advection problem for the configuration tensor; and an advection problem
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for the interface. The first problem is solved by means of a conjugate gradient
(CG) method (Glowinski et al. 1992) and the second is dealt with using a least-
square conjugate gradient method (Bristeau, Glowinski & Periaux 1987). The third
problem is a hyperbolic partial differential equation for the configuration tensor. The
convection term u · ∇A poses certain numerical difficulties. The two key features of
the numerical method used for solving this problem are a scheme that ensures the
positive definiteness of the configuration tensor, and a third-order upwinding scheme
for discretizing the advection term in the constitutive equation (Singh & Leal 1993).
These two features are important for obtaining a split scheme that is stable at relatively
large Deborah numbers. The fourth problem consists of the advection of the level-set
function φ, which is solved using a third-order upwinding scheme (Glowinski &
Pironneau 1992). The advected φ is then reinitialized to be a distance function, which,
as noted in Sussman et al. (1994), is essential for ensuring that the scheme accurately
conserves mass. The finite element code was validated for several test cases which
included the buoyancy-driven motion of a bubble and the deformation of a drop in
a simple shear flow (see Pillapakkam & Singh 2001 for more details).

5. Results
A typical computational domain used in this study is shown in figure 2. The velocity

on the domain boundary is set to zero, i.e. u =0 on all faces of the computational
domain. The initial velocities of the bubble and the ambient fluid are assumed to
be zero and the configuration tensor is set to A = I, which is the relaxed state of
the Oldroyd-B fluid. The bubble velocity u(t) is defined to be the volume-averaged
velocity of the fluid inside the bubble. Simulations were stopped when the bubble
reached a steady state, i.e. the bubble assumed a fixed shape and the rise velocity u(t)
became constant. This constant value of the bubble velocity is denoted by U and
used as the characteristic velocity for computing the dimensionless parameters.

Simulations are initiated by placing a spherical bubble at a distance of 0.5 cm
from the bottom of the domain. The parameters, such as the viscosity, the bubble
radius and the polymer concentration parameter, were all varied over a wide range
to determine the critical dimensionless parameter values for which the rise velocity
of the bubble increases sharply with increasing bubble volume. The results presented
in this paper are only for this interesting parameter regime, and presented in terms
of the dimensionless parameters, as well as the actual dimensional values used in
simulations.

For the results reported in this paper, the density of the ambient liquid is 1 g cm−3,
the bubble radius was varied between 0.1 and 0.3 cm, and the liquid relaxation
time was taken between 0.1 s and 0.2 s. The interfacial tension was held constant at
10 dyn cm−1 and the zero-shear viscosity (ηo) was maintained at 10.25 P. The density
ratio and viscosity ratio were given the value of 10 for all results presented in this
paper. These values were selected to ensure that the computational time needed was
not excessive.

Since the viscosity of the ambient fluid affects the rise velocity of the bubble, the
zero-shear viscosity was maintained constant and only the relative magnitudes of
viscous and viscoelastic contributions to the zero-shear viscosity were varied. This
was achieved by varying the polymer concentration factor c in the Oldroyd-B model,
which controls the polymer contribution to the zero-shear viscosity (see Singh & Leal
1994). The use of this approach allowed us to focus on the effect of the viscoelastic
and viscous components of the ambient viscoelastic fluid on the behaviour of a rising
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c ηo(P) ηs(P) ηp(P)

19.5 10.25 0.5 9.75
12.667 10.25 0.75 9.5
9.25 10.25 1 9.25
5.8375 10.25 1.5 8.75
4.125 10.25 2 8.25

Table 2. The magnitudes of the solvent (ηs) and polymer (ηp) contributions to the zero-shear
viscosity for different values of c, the zero-shear viscosity being ηo =10.25 for all cases.

bubble, without having to take into account the additional complications introduced
by the change in the bubble velocity due to a change in the ambient fluid viscosity.

The variation in rise velocity with the bubble volume was investigated for five
values of the polymer concentration parameter c = 19.5, 12.667, 9.25, 5.8375 and
4.125. The relative magnitudes of the polymer (ηp) and solvent (ηs) contributions to
the zero-shear viscosity (ηo) for different values of c are shown in table 2. For the
range of λr , a, and c considered, De varies between 1 � De � 6, Re � 0.4, Fr < 7.5
and We < 4.5.

5.1. Convergence of transient and steady results

We next show that the numerical results obtained for c = O(10) converge as the
spatial resolution is increased and the time step used decreased. In figure 3(a–d), the
rise velocity is plotted as a function of time for different resolutions and time steps.
The results are identical for t < 0.04 s, but deviate as t increases. The deviation at
larger times due to the fact that when the mesh is not sufficiently refined or when
the time step is not sufficiently small, there is a decrease in the bubble volume which,
in turn, alters the rise velocity of the bubble. However, we find that by increasing
the resolution and reducing the time step, the volume can be kept approximately
constant. It is critical that the bubble volume does not change since it affects the
buoyant lift, the drag, and thus the rise velocity as well. For all results reported in
this paper the change in the bubble volume was less than 1%.

5.1.1. Dependence of the rise velocity on the domain size

Two computational domains with dimensions 2 × 2 × 4 cm (domain A) and
1.5 × 1.5 × 3 cm (domain B) were used in our simulations. The reason for selecting
domains with two different cross-sections is to show that the qualitative dependence
of the bubble rise velocity on the bubble volume remains unchanged as the channel
cross-sectional area is varied. Note that the experimental results described in Liu et al.
(1995) were conducted in rectangular columns for which the cross-sectional width was
approximately 5 to 10 times the bubble diameter, which is of the same order as the
column width used in this study. Although experiments reported in Herrera-Velarde
et al. (2003) were performed in columns with larger cross-sections, they also showed
that the critical volume at which a sharp increase in the rise velocity occurred was
approximately independent of the channel width. As we now show, this is also the
case for our direct simulations.

Figure 4(a), that displays the transient velocity of a bubble of radius 0.125 cm
rising in domains A and B, shows that the steady-state velocity in the smaller domain
is ∼13% smaller and that the velocity at the first overshoot is also smaller. The
rise velocity in the smaller domain is thus reduced to a greater extent due to the
proximity of the domain sidewalls. The rise velocity in the bigger domain oscillates
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Figure 3. (a) Convergence with mesh resolution; the parameter values used here are
ηo = 10.25 P, λr = 0.1 s, c =4.125, a = 0.25 cm and a time step of 10−5, with the dimensionless
parameters Ca = 5.83, Re =0.14, De =2.27 and Fr = 3.63. (b) Convergence with the time
step used. The number of nodes is 409825, and the parameters are the same as in (a). (c)
Convergence with mesh resolution; the parameters used here are ηo = 10.25 P, λr =0.1 s,
c = 9.25, a = 0.25 cm and a time step of 10−5, with the dimensionless parameters Ca = 8.71,
Re = 0.2, De = 3.8, and Fr = 5.4. (d) Convergence with time step. The number of nodes is
equal to 409825, and the parameters are the same as in (c).

to a larger extent than in the smaller domain. The fractional decrease in the velocity
is qualitatively consistent with the Faxen law (see Happel & Brenner 1981). However,
even though the rise velocity is smaller in domain B, the transient behaviour in the two
domains is qualitatively similar. Thus, we opted to use the smaller sized domain for
the bubbles whose radius is 0.125 cm or smaller for which a higher spatial resolution
was necessary around the bubble for obtaining convergent results. We have verified
that for all the cases studied in this paper the qualitative transient behaviour of the
bubbles was indeed independent of the domain size.

We also investigated the dependence of the rise velocity on the domain size for a
range of bubble radii 0.1 cm< a < 0.3 cm and plotted the steady-state velocity as a
function of the bubble volume on a log-log plot. The results for domains A and B are
shown in figure 4(b). From this figure we note that the rise velocity in domain A is
larger, which is consistent with the predictions of Faxen’s law. The qualitative nature
of the terminal velocity versus volume curve, including the critical volume at which
the sudden increase in the rise velocity occurs, however, remains unchanged despite
the increase in the cross-sectional area.
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Figure 4. (a) Transient velocity of bubbles of radius 0.125 cm rising in domain A, with
a/w ∼ 0.0625, and domain B, with a/w ∼ 0.083, where w is the channel width. The parameters
are ηo = 10.25 P, c = 4.125, λr =0.1 s, γ = 10 dyn cm−1, the dimensionless parameters are:
Ca = 1.53, Re = 0.01, De = 1.2, and Fr = 1.35. The rise velocity in domain A is approximately
13% larger because of the wall effects, which act to reduce the velocity, and are smaller for
this domain since its cross-sectional area is larger. (b) Terminal velocity versus volume on
a log-log plot in domains A and B. The parameters are ηo = 10.25 P, c = 9.125, λr = 0.1 s,
γ= 10 dyn cm−1.

5.2. Transient response

The transient behaviour of a buoyant bubble accelerating from rest in a viscoelastic
fluid depends on its volume and the magnitudes of the viscous and viscoelastic
stresses, which themselves depend on the fluid properties such as the viscosity and
the relaxation time. The bubble is driven by the force of buoyancy, while the viscous
and viscoelastic stresses resist its motion. Furthermore, the problem of a rising bubble
differs from that of a falling solid sphere, since, in addition to these forces and stresses,
the surface tension force acts on the bubble surface, and the shape of the bubble may
become non-spherical. If the deforming stresses at the interface are sufficiently smaller
than the surface tension force, the bubble shape remains approximately spherical.
However, when these deforming stresses are significant the interface deforms and the
bubble shape changes depending on the properties of the ambient fluid: it deforms
to an oblate shape in inertia-dominated flows and to a prolate shape with or without
a cusp-like trailing end in flows in which viscoelasticity is important.

A change in the bubble shape is accompanied by a change in the stress distribution
around the bubble which, in turn, affects the net drag acting on the bubble. As a result
of these transient interactions between the shape and the stresses, it takes a rising
bubble a relatively long period of time to reach a constant rise velocity. Note that
this additional interaction between the shape and the stress distribution is obviously
not present for a rigid sphere sedimenting in a liquid.

In figure 5 the transient velocities of bubbles of two different sizes are shown as
a function of time. All other dimensional parameters are held constant. The figure
shows that in both cases the bubble velocity reaches one or two maximal values,
decreases and then reaches an asymptotic value. The velocity of the bubble of radius
a =0.15 cm decreases to a constant value after an initial overshoot, while that of the
larger bubble experiences one or more local maxima before reaching its final value.
As discussed below, the transient response of the larger bubble deviates from that
of the smaller bubble, as well as from that of a solid sphere, because it deforms
due to the extensional nature of the viscoelastic stresses near the trailing end. When
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Figure 5. The transient velocity of bubbles of radii 0.15 cm and 0.3 cm rising in a viscoelastic
fluid with ηo = 10.25 P, c = 5.8375 and λr = 0.1 s, γ =10dyn cm−1. For a = 0.15 cm, after the
initial overshoot the bubble decelerates to a constant velocity and attains a steady shape which
is prolate. For a = 0.30 cm, the bubble develops a cusp-like trailing end and velocity increases
before reaching a higher terminal value. The dimensionless parameters for a bubble of radius
a = 0.15 cm are Ca = 2.05, Re = 0.02, De = 1.3, and Fr = 1.64, while those for a bubble of
radius a = 0.3 cm are Ca =9.225, Re = 0.26, De = 3, and Fr = 5.24.

the interfacial tension dominates, the bubble attains a steady shape that is either
approximately spherical or prolate without a pronounced tail, and reaches a constant
velocity. However, when the viscous and viscoelastic stresses at the interface overcome
the interfacial tension, the bubble develops a cusp-like trailing end, and this change
in the bubble shape is accompanied by an increase in velocity, as can be seen from
the upper curve in figure 5 (corresponding to a radius a = 0.3 cm).

We now describe in detail the transient behaviour of a bubble of radius 0.25 cm for
which the response is similar to a bubble of radius of a = 0.3 cm developing a cusp-like
trailing end. The initial motion of the bubble is dominated by the viscous stresses, as
the viscoelastic stresses take some time to build up. The trace of the configuration
tensor trA and velocity distributions at the time marked 1 in figure 6 are displayed
in figure 7(a, b). From these distributions shown on the domain midplane we note
that the viscoelastic stresses are relatively small, and significant only in a small region
around the bubble. The velocity field is similar to that around a bubble rising in a
Newtonian liquid with a vortex ring around the bubble. After the viscoelastic stresses
build up, the bubble velocity decreases and this causes the first overshoot in the
velocity versus time curve of figure 6.

King & Walters (1972) performed an analysis of the unsteady motion of solid
spheres in viscoelastic liquids in which they noticed a similar behaviour. Specifically,
they observed that the velocity overshoots the steady-state velocity, and that when
the viscoelastic contribution becomes significant, the sphere starts to decelerate. The
qualitative distribution of trA in the bubble wake is also similar to that occurring in
the case of a solid spherical particle (see Arigo & McKinley 1998 and Singh et al.
2000).

Following this rapid initial acceleration, the viscoelastic effects start to become
significant, and the bubble begins to decelerate. The distribution of trA at point 2
marked in figure 6 is shown in figure 8(a). Notice that not only has the maximum value
of trA increased to about 9.0 but also it is now significant in a larger region around
the bubble. It is precisely at this point in the rise of the bubble that the structure
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Figure 7. (a) Isovalues of trA at time t ≈ 0.02 s, corresponding to point 1 in figure 6. The
parameters are the same as in figure 6. At this time, the maximum value of trA is 3.1, which
occurs at the trailing end of the bubble. Since the maximum value is only slightly greater than
3.0, the viscoelastic stresses are not important at this time. (b) Plot of the velocity vectors
around the bubble, corresponding to (a). Note that at this stage, the velocity in the wake of
the bubble is in the direction of the motion of the bubble. The intersection of the centre of
the vortex ring and the midplane is indicated by black dots.
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Figure 8. (a) Isovalues of trA at time t = 0.055 s, corresponding to point 2 in figure 6. The
parameters are the same as in figure 6. At this time, the maximum value of trA is 9.0, which
occurs at the trailing end of the bubble. (b) Plot of the velocity vectors at the domain midplane,
(a). Note that at this stage the velocity in the wake of the bubble is in the direction opposite
to the direction of the bubble motion. The wake, therefore, is negative. The intersection of the
centre of the vortex ring and the midplane is indicated by black dots.

of the wake changes, i.e. the velocity vectors near the trailing end of the bubble are
now pointing in the direction opposite to the direction of motion of the bubble (see
figure 8b). Another interesting feature of the velocity field is the emergence of an ad-
ditional vortex ring in the wake. The intersection of the centre of this vortex ring with
the domain midplane is indicated by black dots and, as the figure shows, it is located at
a distance from the bubble of the order of the bubble radius. These changes in the ve-
locity field correspond to the point where the bubble velocity begins to increase again.

As noted above, at the end of the deceleration phase, either the bubble reaches
a constant terminal velocity and a steady-state shape which is prolate with a
rounded trailing end (see for example the bottom image in figure 5, corresponding
to a = 0.15 cm) or the bubble undergoes a shape change from prolate to one with
a cusp-like tail, while accelerating again to reach a higher terminal velocity. In the
former case the nature of the wake is similar to that in the Newtonian case, but in
the latter case the wake becomes negative. Thus, there appears to be a connection
between the bubble shape and the jump in its rise velocity, which will be discussed in
detail below.

For the stage marked 3 in figure 6, the distributions of trA and velocity field are
shown in figure 9(a, b). Notice that the trailing end of the bubble is now pulled out
and the maximum value of trA takes the large value of 28.0. The region in which
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Figure 9. (a) Isovalues of trA at time t = 0.095 s, corresponding to point 3 in figure 6. The
parameters are the same as in figure 6. At this time, the maximum value of trA is 28.0, which
occurs at the trailing end of the bubble. (b) Plot of the velocity vectors in the domain midplane
corresponding (a). It is interesting to note the change in the bubble shape from prolate in
figure 8(b) to prolate with a cusp-like tail in this figure. Furthermore, the two black dots at the
intersection of the vortex ring in the wake and the midplane have now drifted further away
below the trailing end of the bubble.

the viscoelastic stresses are significant is much larger than before, and the magnitude
of trA is large in a narrow region emanating from the tail of the bubble. This is
consistent with the results obtained in two dimensions by Chilcott & Rallison (1988),
and Noh, Kang & Leal (1993) who used a version of the FENE dumbbell model
to show that at large Deborah numbers the viscoelastic stresses are large in a thin
region at the rear of the bubble and capable of overcoming the surface tension to
produce a cusped-like trailing end. Moreover, the velocity vectors show that the wake
is negative and that the additional vortex ring has moved away from the bubble (see
figures 9 and 10). Also notice that the maximum value of trA is not along the vertical
line emanating from the trailing end and the trA distribution near the trailing end is
not axisymmetric which, as we will discuss later, is a result of the fact that the trailing
end itself does not remain axisymmetric.

As the terminal velocity increases with increasing bubble size, the capillary number
for the larger sized bubbles is larger making them easier to deform. Similarly, the
viscoelastic stresses, which also depend on the rise velocity of the bubble, are also
larger for larger bubbles. It can be observed from figure 9(a) that the viscoelastic
stresses are particularly large near the trailing end of the bubble, and as noted
in Pillapakkam & Singh (2001), they are extensional near the trailing end as the
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Figure 10. The velocity vectors in a plane at a distance of 0.3 cm from the trailing end of the
bubble rising in a viscoelastic fluid; the parameters are ηo =10.25 P, λr = 0.1 s, a =0.35 cm and
c = 19.5. In an approximately circular region with dots, directly below the trailing end of the
bubble, the velocity vectors point downwards, indicating that the fluid is moving away from
the bubble. The wake is therefore negative.

principal direction of the configuration tensor is approximately parallel to the outflow
direction (see also Ramaswamy & Leal 1999). Thus, when the viscoelastic stresses are
significant the bubble assumes the characteristic prolate shape. We remind the reader
that a bubble rising in a Newtonian liquid takes an oblate shape with the trailing end
pulled inwards. When the bubble volume is increased further, its trailing end deforms
into a cusp-like shape (see figures 5–9).

5.2.1. Negative wake

The fluid velocity in the wake of a bubble rising in a viscoelastic fluid, very close to
the trailing end, is in the direction of the motion of the bubble. However, at a small
distance from the trailing end, the velocity direction reverses. For a bubble rising in
a Newtonian liquid, the fluid velocity behind the bubble is in the same direction as
the motion of the bubble (see figure 11a).

The existence of a cusp-like trailing end, which is sustained by the presence of the
surface tension and the extensional viscoelastic stresses, alters the velocity field in
the bubble wake. The altered velocity field is such that the wake is negative, while
the stresses and the drag for the bubble are modified such that the bubble travels at
a much higher velocity than before the trailing edge is pulled out.

The presence of a negative wake can also be seen more clearly in figure 10 where
the velocity vectors in a horizontal plane at a distance of 0.3 cm below the trailing
end of the bubble are depicted. Arrows indicate vectors pointing out of the plane
and dots velocity vectors pointing into the plane. It is seen that velocity vectors point
downward in a circular area just below the trailing end of the bubble while they
point upward in the surrounding annular region. Since the velocity vectors below the
trailing end of the bubble point downward, the wake is negative.
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Figure 11. (a) Stream traces on the domain mid-plane for a bubble rising in a Newtonian
fluid with viscosity η =10.25 P and a bubble radius a = 0.3 cm; Re = 0.3, Ca = 10.25, and
Fr = 5.8. Notice that the velocity in the wake is in the upward direction, i.e. in the same
direction as the motion of the bubble. (b) Stream traces on the domain mid-plane for a bubble
rising in a viscoelastic fluid; the parameters are a = 0.35, c = 19.5, ηo = 10.25 P and λr = 0.1 s.
Notice that in addition to the vortex ring at the equator, there is an additional vortex ring in
the wake of the bubble.

As noted above, apart from the vortex ring at the equator of the bubble, which
is also present for bubbles rising in Newtonian fluids (see figure 11a), there is an
additional vortex ring in the wake of a bubble which can be clearly seen in the stream
trace plots of figure 11(b).

Figure 12 shows that the magnitude of the maximum negative velocity in the wake
of the bubble increases as the parameter λror c of the ambient fluid is increased. This
is important because, as we will discuss later, when the negative wake is stronger the
sharp increase in the bubble rise velocity is larger.

5.2.2. Transient response as a function of c

Next, we study the transient response of a rising bubble as a function of c, while
keeping the remaining parameters constant. Since ηo is held constant, changing c also
requires changing ηp and ηs , such that ηo = ηp + ηs remains constant.

The transient response of a bubble with radius a = 0.35 cm rising in a viscoelastic
fluid with ηo = 10.25 P and λr = 0.1 s is displayed in figure 13(a) for two different
values of c. We note from this figure that the velocity is more oscillatory for the case
with a higher value of c, as the viscoelastic stresses are larger when c is larger. This
is due to the fact that increasing c increases the viscoelastic component of the total
viscosity but reduces the viscous component. Our simulations show that for higher
c values, for which the viscous contribution to the viscosity is smaller, the bubble
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Figure 12. The velocity in the wake of a bubble, for a bubble radius a = 0.25 cm, rising in a
viscoelastic fluid with ηo = 10.25 P, c =4.125 and 9.25, λr = 0.1 s and λr =0.2 s.

attains a higher terminal velocity. After the initial overshoot, the bubble velocity
starts to decelerate due to the build-up of viscoelastic stresses. For c = 4.125, after the
deceleration phase, the bubble’s rise velocity oscillates only slightly and eventually
reaches steady state and the shape remains approximately fixed, while for c =9.25,
the velocity continues to oscillate and the shape of the bubble does not reach a
steady state. The amplitude of the velocity oscillations decays with time in both
cases, but the rate of decay is slower than for the smaller bubble shown in figure 5
for which c and De are relatively smaller. This behaviour indicates that there is an
overshoot in viscoelastic stresses, which can occur when c and De are greater than
one, and thus the time interval over which the transients persist is larger. This has
been observed both in experiments and simulations (see Singh & Leal 1993, 1994, and
references therein). Also notice that the response is similar to that of an underdamped
mass–spring system which could also be a reason since the Reynolds number is not
negligible (we thank a reviewer for suggesting this). It is also interesting to note that
due to a relatively higher rise velocity the leading end of the bubble for the larger c

case is flattened, which is similar to the deformation of bubbles rising in a Newtonian
fluid. Moreover, the maximum value of trA in the domain is larger for c =4.125, but
the region in which it is large is concentrated in a smaller area than for c = 9.25 (see
figure 13b, c).

5.2.3. Transient response as a function of relaxation time

We next analyse the transient response of a rising bubble as a function of the
fluid relaxation time λr . The values of c and a are held constant, and ηo = 10.25. For
λr = 0.1 s and 0.2 s the velocity of a bubble with a = 0.25 cm is shown in figure 14.
The steady-state velocity is higher for the case with λr =0.2 s, but the magnitude
of the overshoot, compared to the approximate steady value, is larger for λr = 0.1 s.
Furthermore, in the case where λr = 0.2 s, the peak value of the overshoot occurs at
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Figure 13. (a) The bubble rise velocity is shown as a function of time for two different values
of c; the parameters are a = 0.3 cm, ηo =10.25 P and λr = 0.2 s. The dimensionless parameters
for the bubble with c =4.125 are Ca = 9.225, Re =0.26, De = 3, and Fr = 5.24, while the bubble
with c = 9.25 did not reach steady state. (b) Isovalues of trA at steady state for a bubble rising
in a viscoelastic fluid for c = 4.125. The remaining parameters are as in (a). (c) Isovalues of trA
at t =0.12 s for a bubble rising in a viscoelastic fluid for c = 9.25. The remaining parameters
are as in (a).

a later time. As discussed in the previous sub-section, the overshoot is due to the
viscoelastic stresses taking some time to build up and for the case with larger λr , the
time interval required for the building up of viscoelastic stresses is larger.
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Figure 14. The rise velocity u(t) of a bubble for ηo =10.25 P, c = 4.125, a = 0.25 cm and for
λr = 0.1 s and 0.2 s. The dimensionless parameters for the bubble rising in a fluid with λr =0.1 s
are Ca = 5.83, Re = 0.14, De =2.27, and Fr = 3.63, while those corresponding to the case where
λr = 0.2 s are Ca = 8.2, Re = 0.3, De = 5.33, and Fr = 4.66.

As the steady values of the bubble velocity for the above two cases are different,
their shapes, as well as the viscoelastic stress distributions around them, are also
different. For λr = 0.2 s, the maximum value of trA is larger and the region in which
the viscoelastic stresses are significant is also larger (see figures 13b and 15a). However,
as is clear in these figures, for λr =0.1 s, the trailing end of the bubble is pulled out
further. The local region in the wake of the bubble in which trA is maximum no
longer emanates from the tail, but is maximum at a small distance from the vertical
passing through the bubble centre. The value of trA emanating from the pulled out
tail is relatively smaller.

Another interesting aspect of the deformed bubble shape is that the centre of
curvature in the domain midplane is no longer inside the bubble, implying that one of
the principal radii of curvature is negative. Figure 15(a, b) shows that the vortex ring
below the bubble is farther away from the trailing end of the bubble for λr = 0.2 s. The
width of the negative wake region, i.e. the region in which the velocity points away
from the bubble, is wider for λr = 0.2 s and the magnitude of the negative velocity is
larger.

5.3. Sharp change in rise velocity as a function of bubble volume

It has been noted in several past experimental studies that for some viscoelastic
liquids the terminal velocity of a bubble increases rather abruptly at a critical value
of the bubble volume (Astarita & Apuzzo 1965 and Liu et al. 1995 and references
therein). Specifically, if the bubble volume is slightly larger than the critical volume,
the terminal velocity can be as large as ten times that of a bubble with volume slightly
smaller than the critical volume.

Our simulation results are in good qualitative agreement with these experimental
observations. We find that when the terminal velocity of a bubble is plotted against
the bubble volume, there is a critical volume at which the terminal velocity increases
very steeply with increasing volume. This steep increase is analysed below in terms
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Figure 15. (a) Isovalues of trA at steady state for a bubble rising in a viscoelastic fluid for the
parameter values ηo = 10.25 P, c = 4.125, a = 0.25 cm and λr = 0.1 s. Note that the maximum
value of trA, which occurs near the trailing end of the bubble, is approximately 14.0. The
dimensionless parameters are the same as in figure 14 for λr =0.1 s. (b) Velocity vectors in
the mid-section of the domain illustrating the positions of the vortex rings with respect to the
bubble. Note that the vortex ring below the trailing end of the bubble is at a distance of the
order of the bubble radius from the bubble. The parameters are λr = 0.1, c = 4.125, ηo =10.25 P
and a =0.30 cm. The dimensionless parameters are the same as in figure 14 for λr = 0.1 s.
(c) Velocity vectors in the mid-plane at steady state for a bubble rising in a viscoelastic fluid.
The parameters are as in figure 14 for λr = 0.2 s. Note that as the relaxation time of the
ambient fluid is increased, the distance of the vortex ring from the trailing end of the bubble
is greater than in figure (c).
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Figure 16. (a) Transient velocity of bubbles rising in a viscoelastic fluid with ηo = 10.25 P,
c = 12.667, λr = 0.1 s, γ = 10 dyn cm−1. The bubble radius is varied from 0.1 cm to 0.3 cm.
(b) Terminal velocity versus volume on a log-log plot for the same parameters as (a). The
terminal velocities of the bubble on the two sides of the sharp increase are 0.78 and 3.75 cm s−1,
respectively. The terminal velocity increases by a factor of ∼4.8 when the bubble radius is
increased by ∼8%. (c) Capillary number and Deborah number versus volume. Notice that
both Ca and De are O(1) at the critical volume for the same parameters as (a).

of the changes that occur (at this critical volume) in the bubble shape and in the
velocity distribution around the bubble.

The transient velocities of several bubbles with radii between 0.1 cm and 0.3 cm
are shown in figure 16(a). The bottom three curves, which correspond to bubbles of
radii 0.1 cm, 0.125 cm and 0.15 cm, respectively, attain steady states after the initial
overshoot while the velocities for the top four oscillate before reaching steady state.
The velocities of the bubbles with a � 0.3 cm continue to oscillate and do not reach
a steady value before the bubble reaches the top of the domain.

From figure 16(b) in which the steady-state velocity is plotted against the bubble
volume on a log-log plot, the terminal velocity of a bubble with a = 0.1625 cm is
3.75 cm s−1, which is approximately 4.8 times larger than 0.78 cm s−1, the velocity of
a bubble of radius a = 0.15 cm. Moreover, while the terminal velocities for the three
cases investigated for a � 0.15 cm vary only slightly with the radius, an approximately
five-fold increase in the terminal velocity occurs for the relatively small change of
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Figure 17. Terminal velocity versus volume on a log-log plot for ηo = 10.25 P, λr = 0.1 s and
γ = 10 dyn cm−1. (a) c = 4.125, (b) c = 5.8375, and (c) c = 9.25.

c Magnitude of jump

4.125 1.66
5.8375 2.59
9.125 3.65

12.667 6.02

Table 3. Magnitude of the jump for various values of c. The computed jumps are based on
the differences in the terminal velocities of the bubbles with radii 0.15 cm and 0.175 cm.

about 8% in the bubble radius when the bubble volume is 0.015 cm3. Furthermore,
figures 16(c) shows that the dimensionless parameters Ca and De are O(1) or smaller
before the jump, and greater than one after the jump. The Reynolds number, however,
remains less than one for all the bubble volumes considered.

Here, it is important to note that since the channel width is only approximately
eight times the bubble diameter, the presence of the walls, as discussed earlier, causes
a decrease in the bubble rise velocity. The decrease is expected to be larger for the
larger bubbles. Therefore, the above five-fold increase in the velocity for about an
8% increase in the bubble radius is clearly not due to the wall effects since the wall
effects should make the larger bubble rise slower, and not faster.

Next, we study the dependence of the magnitude of the steep increase in the terminal
velocity at the critical bubble volume on the polymer concentration parameter c. It has
been noted in Astarita & Apuzzo (1965) and Liu et al. (1995) that the magnitude of
the jump in the rise velocity at the critical volume increases with increasing polymeric
concentration in the solution. Since the zero-shear viscosity of the solutions used in
experiments is several times to orders of magnitude larger than that of the solvent
itself, it is reasonable to assume that the parameter c for these solutions is of order
10 or larger. The relationship between the polymer concentration parameter c and
the actual polymer concentration is, however, simple only when the concentration is
very small. At larger polymer concentrations, and even for the so-called moderately
concentrated solutions, the relationship is quite complex.

In figures 16(b) and 17 the terminal velocity is plotted as a function of the bubble
volume for four different values of c. These figures show that the increase in the
terminal velocity at the critical volume is steeper for larger values of c. For example,
when the bubble radius is increased from 0.15 to 0.175 the terminal velocity increases
sharply, and the jump in the bubble velocity increases with increasing c. These results
are summarized in table 3. This is consistent with the case of a Newtonian fluid,
which corresponds to c = 0, and for which the velocity–volume plot does not exhibit
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Figure 18. (a) Steady-state shapes of the bubbles for different volumes rising in a viscoelastic
fluid for the parameter values c = 4.125, λr = 0.2 s, ηo = 10.25 P. The initial radii are:
(i) a = 0.125 cm (ii) a = 0.15 cm (iii) a = 0.2 cm (iv) a = 0.3 cm. The first two cases correspond
to volumes smaller than the critical volume at which the steep increase in bubble velocity is
observed. (b) As (a) but for c = 9.125. In comparison with (a) the front ends of the bubbles
appear flatter, which is a consequence of the terminal velocity increasing with increasing c,
and thus the corresponding Reynolds numbers in (b) are larger. As a result the front end
of the bubble is flattened in a manner similar to the way the front end of bubbles rising in
Newtonian fluids flatten.

any region of steep increase. Note that, as stated in § 1, in the case of a Newtonian
fluid a jump of 1.5 times in the terminal velocity can arise if the boundary conditions
on the bubble surface are changed from no slip to shear free. No jump is reported
in the present work since the same boundary conditions are imposed for all bubble
volumes.

In our simulations the critical volume, at which a sharp increase in the terminal
velocity occurs, does not show a strong dependence on c because the latter is varied so
that the zero-shear viscosity remains fixed. The critical volume, however, does depend
on the remaining parameters, including the zero-shear viscosity, and the relaxation
time (see figure 16).

5.3.1. Dependence of the bubble shape on the bubble volume

For the parameter values c = 4.125 and λr = 0.2 s, the steady-state shapes of the
bubble are shown in figure 18(a) for four different values of the bubble volume, and in
figure 18(b) similar results are shown for c = 9.125. In both figures the bubble shape
for the first two cases, for which the bubble volume is smaller than the critical value,
is prolate, and for the last two cases the bubble trailing end is cusp-like. These figures
clearly show that the shape of a bubble with volume smaller than the critical volume
is fundamentally different from that of a bubble with a volume larger than the critical
volume. Also, as the rise velocity of bubbles increases with increasing c, the Reynolds
number is larger for the bubbles shown in figure 18(b). As a result the fronts of the
bubbles shown in figure 18(b) are more flattened than those in figure 18(a).
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Figure 19. Velocity distribution in the domain mid-plane. Notice that the wake is positive
since the bubble volume is smaller than the critical volume; the parameters are a = 0.15 cm,
λr = 0.2 s, c = 4.125. All parameters, except for the bubble volume, are the same as in figure 15(c)
for which the wake is negative since the bubble volume is larger than the critical volume at
which a sharp increase in the rise velocity occurs. This is in agreement with the experimental
results of Herrera-Velarde et al. (2003).

We have discussed in § 5.2 that our simulation results also indicate that the bubbles
for which the velocity oscillates after the initial overshoot experience a change from
a prolate shape to one with an extended cusp-like trailing end. In addition, for
these bubbles the terminal velocity can be several times larger than for bubbles
without extended trailing ends, depending on the value of the parameter c. Thus, the
change in the shape of the bubble appears to be one of the reasons for the apparent
sharp variation in the terminal velocity at the critical volume. Specifically, bubbles
with volumes on either side of the critical volume have markedly different transient
behaviours, different deformed shapes, and significantly different terminal velocities,
as is evident from comparing the shapes of the bubble on either side of the sharp
change in the velocity–volume plot (see figures 16, 17 and 18). We may therefore
conclude that the bubble shape plays a critical role in determining the transient as
well as the terminal velocity of bubbles rising in viscoelastic fluids.

Another factor that we believe affects the rise velocity of the bubble is the change
in the velocity field of the ambient liquid and the presence of the negative wake. The
velocity fields of two bubbles with volumes smaller and larger than the critical volume
(at which the steep increase in velocity occurs) are shown in figures 19 and 15(c),
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Figure 20. u(t) of a bubble rising in a viscoelastic fluid for the parameter values ηo = 10.25 P,
λr = 0.1 s, c = 19.5. For the case with a = 0.15 cm, the bubble reverses its direction and moves
against the direction of buoyancy for a short time interval before the velocity becomes positive
again.

respectively. All other parameters for the two cases are identical. The shape of the
bubble with radius a = 0.15 cm is prolate, while that with radius a =0.25 cm exhibits
a pulled-out trailing end. The velocity distributions for the two cases are also quite
different. For a bubble of radius a = 0.15 cm the direction of motion of the fluid in the
wake is the same as that of the bubble, the flow in this case being qualitatively similar
to the flow around a Newtonian bubble. For a = 0.25 cm, on the other hand, the wake
is negative as the direction of fluid motion in the wake is the opposite of that of the
bubble and there is an additional vortex ring in the wake. We may therefore conclude
that at the critical volume not only the shape of the bubble changes qualitatively, but
also the nature of the velocity distribution around it changes fundamentally due to (i)
the formation of an additional vortex ring and (ii) the appearance of a negative wake.
The appearance of negative wake above the critical volume, as well as the presence
of the additional vortex ring, is in agreement with the experimental results reported
in Funfschilling & Li (2001) and Herrera-Velarde et al. (2003).

5.3.2. Transient response at higher values of c

Figure 20 displays the transient velocities of the bubbles of three different radii
rising in a viscoelastic fluid with c = 19.5. Notice that the overshoots are rather large
for all three cases and that for a = 0.15 cm the bubble velocity after the overshoot
becomes negative for a brief period of time. This implies that the bubble briefly
falls before it begins to rise again due to the viscoelastic stresses. This phenomenon
has also been observed for solid spheres falling in a viscoelastic upper-convected
Maxwell fluid (Zheng & Phan-Thien 1992). They observed that the sphere velocity
became negative for a brief period of time when the Wissenberg number was greater
than one, which they noted happened because the hydrodynamic drag exceeded the
buoyant weight, causing not just the deceleration of the sphere but also a change
in the direction of motion. This phenomenon, however, would be difficult to observe
in experiments due to the experimental difficulties involved in the generation of a
perfectly spherical bubble at the initial time which then, as in simulations, accelerates
upwards.
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Figure 21. (a) A magnified view of the trailing end of a bubble rising in a viscoelastic
fluid in a domain with a square cross-section. In both x, z- and y, z-views the trailing end
appears to be broad. The parameters are ηo = 10.25 P, c =5.8375, a =0.3, λr = 0.1 s and
γ = 10 dyn cm−1. (b) A pointed cusp-like trailing edge is observed when the bubble is viewed
along the cross-sectional diagonal of the computational domain.

5.4. Bubbles with two-dimensional cusp-like trailing ends

Liu et al. (1995) experimentally studied the rise of air bubbles in viscoelastic liquids
inside channels with rectangular and square cross-sections and found that for certain
parameter values bubbles develop cusp-shaped trailing ends that appear to have
pointed ends in one view and broad ends in the orthogonal view (chisel shaped).
Interestingly, they found that in channels with rectangular cross-sections the trailing
end appeared to be broad when viewed from the narrow window and pointed when
viewed from the broad window. For channels with square cross-sections, they found
that the sharp edge of the cusp-shaped trailing end was oriented parallel to one of
the cross-section diagonals.

Unlike for the experiments conducted by Liu et al. (1995) in which the shape of
the trailing edge was different in the two orthogonal views, our simulations lead to
bubbles displaying a broad trailing edge in both orthogonal views which, as discussed
below, is a consequence of the fact that the spatial resolution used is finite (see
figures 21 and 22). This was the case for simulations performed in domains with both
square, with dimensions 2 × 2 × 4 cm, and rectangular, with dimensions 2 × 1.5 × 4 cm,
cross-sections. However, in domains with square cross-sections, when viewed along
the diagonal, the bubble exhibits a pointed trailing end (see figure 21); however, it is
not cusp shaped, since the angle formed at the trailing end is not zero.

For channels with rectangular cross-sections, the shape of the trailing end is
qualitatively similar to those with square cross-sections, except that a short distance
above the tip the width of the tail in the direction parallel to the narrow window is
larger than the width parallel to the broad window, which is in qualitative agreement
with Liu et al. (1995) (see figure 22). The opposite is true at larger distances from
the trailing end, which appears to be in agreement with the photographs in Liu et al.
This latter point, however, is not noted in their paper.

It is clear that our numerical method lacked accuracy in simulating the elongated
and narrowed trailing end of the bubble. The reason for this lies in the fact that when
the width of the tail, in any of the coordinate directions, becomes smaller than the
size of an element it cannot be resolved using the level-set method because it does
not allow for two interfaces to be present in one element. Therefore, due to this lack
of resolution, even if the governing equations allowed the formation of a cusp at the
trailing end, our numerical scheme is not capable of resolving this shape at scales
smaller than the size of an element. However, when a mesh with bigger elements was
used the trailing-end shape appeared closer to that observed in experiments.
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Figure 22. Magnified view of the bubble rising in a viscoelastic fluid in a domain with a
rectangular cross-section, with dimensions 2 × 1.5 × 4 cm. (a) View from broad window (top)
and section view of the trailing end at a distance of 0.02a above the trailing end tip. In both
views, the trailing end appears to be rather broad. The parameters are ηo = 10.25 P, c = 5.8375,
a = 0.3, λr = 0.1 s and γ = 10 dyn cm−1. (b) View from narrow window (top) and section view
of the trailing end at a distance of a above the trailing end. In both sections the trailing end
appears to be broad, but at a distance of a the major axis is parallel to the broad side of the
cross-section, and at a distance of 0.02a it is parallel to the narrow side.

5.4.1. Stresses near the trailing end

As discussed in § 5.3, after the extensional viscoelastic stresses at the trailing end of
the bubble reach a critical value, the trailing end of the bubble is pulled out. As this
takes place, the local radius of curvature decreases and thus the surface tension force,
which locally acts in the upward direction, increases. A new balance is reached when
the increased surface tension force at the cusp-like (or cornered in the discretized case)
trailing end is sufficient to balance the force due to the viscous and viscoelastic stresses.

The existence of a cusp-like, or cornered, trailing end is thus sustained by the
presence of the surface tension force and the extensional viscoelastic stresses that
alter the velocity field in the wake of the bubble. The altered velocity field is such
that the wake becomes negative and the stresses are such that the bubble attains a
much higher velocity than before the trailing end was pulled out.

In the discretized case the bubble surface is represented using planar linear elements,
and thus the surface tension force which depends on the radius of curvature at the
sharp corner remains finite. The same is true for the viscous and viscoelastic stresses
near the trailing end (with a sharp corner), shown as a function of the distance from
the trailing end in figure 23. Both the velocity gradient |∇u| and the trA grow as the
distance from the trailing end decreases, indicating that the stresses at the trailing
end are singular, but they remain finite for the discretized problem. Furthermore, the
negative slopes of the two curves |∇u| and trA versus the distance from the trailing
end increase with increasing bubble volume, implying that the stresses grow faster
(the stress singularity, if it exists, is stronger) for the larger bubbles. As noted in
§ 5.1, our results for the rise velocity of the bubble do not change when the spatial
resolution is increased, indicating that the velocity and stress distributions away from
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Figure 23. The magnitude of (a) the velocity gradient |∇u| and (b) trA are shown as a function
of the vertical distance from the trailing edge of the bubble; the parameters are ηo = 10.25 P,
λr = 0.1 s, c = 4.125. The bubble radius is varied between 0.1 cm and 0.25 cm. The bubbles with
radii 0.175 cm and 0.25 cm have a volume larger than the critical volume.

the trailing end are independent of the mesh resolution used (see Singh & Leal 1995).
Specifically, Singh & Leal showed that for a viscoelastic flow around a 3π/2 corner
the stresses and velocity field away from the corner are not influenced by the mesh
resolution used at the corner.

The existence of a two-dimensional cusp-shaped trailing end, or even a trailing end
with a corner which is the case in our simulations, is an important issue because the
stresses at the trailing end must balance the concentrated force due to the surface
tension at the point of cusping or at a corner. (For the discretized problem, however,
even when there is a corner, the surface tension force at the corner remains finite.)
This requires that the stress at the cusping point has a non-integrable singularity
and the dissipation rate of energy is infinite (see Joseph et al. 1991; Liu et al. 1995;
Jeong & Moffatt 1992; Shikhmurzaev 1998, and references therein). From a physical
point of view, this is not acceptable, and it was shown by Jeong & Moffatt that for
a Newtonian fluid the interface remains smooth for finite capillary numbers, but the
radius of curvature decreases exponentially with the capillary number. These authors
also showed that the radius of curvature is of the order of molecular dimensions when
it is computed based on the capillary number for experiments in which cusp-shaped
interfaces were observed, indicating that the continuum theory may not be applicable
and that some other physical mechanism must be introduced to model the problem
(Shikhmurzaev 1998).

As already noted, in the discretized case even when the trailing end of the bubble
develops a corner, the viscous and viscoelastic stresses, as well as the surface tension
force at the cornered tail, remain finite, but grow as the finite element mesh is refined.
The discretized problem, therefore, differs from the continuous problem in this sense.

In a Newtonian fluid, a true cusp cannot arise and the tip is always rounded with
a small radius (the radius, however, may be of the order of molecular dimensions),
but this may not necessarily be the case for viscoelastic fluids. Here, it is important
to remember that since the viscoelastic stresses at the trailing end are extensional and
cause the trailing end to pull out in the first place, they must be considered in the
force balance at the cusped trailing end.

Furthermore, one must remember that the governing equations (5)–(7) for the
Oldroyd-B model qualitatively capture the features of real viscoelastic liquids,
including the fact that the stresses at the trailing end are extensional, but these
equations may not necessarily capture the physics accurately once the radius of
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Figure 24. (a) Smooth bubble; (b) singular bubble.

curvature becomes of the order of molecular dimensions. In other words, the
possibility that the bubbles rising in real viscoelastic liquids do develop cusp-shaped
trailing ends should be considered.

If we assume that a bubble rising in a real viscoelastic liquid has a cusp-shaped
trailing end, we must consider the fact that the integral of the surface tension force
over its surface does not integrate to zero, unlike in the case of a smooth bubble. A
cusped bubble, therefore, experiences an additional upward force that is concentrated
at the point of cusping, which, of course, must be balanced by the viscous and
viscoelastic stresses in the fluid. In this sense, the problem of a cusped bubble differs
from that of a smooth bubble. This issue is considered in the next subsection.

5.4.2. Analysis of surface tension forces on bubbles with singular surfaces

Let B be a bubble with a smooth (C2) closed surface S. The net surface force on
the bubble, assuming a constant surface tension coefficient γ , is given by

F =

∫
S

2 H γ n dA (8)

where H is the mean curvature of S and n is the unit outer normal on S. It is known
(see Blackmore & Ting 1985 and references therein) that F = 0. We shall show that
for certain types of singularities in the surface at the trailing end of the bubble, F
is no longer zero and there is a net upward force that accelerates the bubble to
a larger terminal velocity. The smooth and the singular versions are illustrated in
(figure 24a, b).

5.4.3. Surface forces

Recall that a vector-valued one-form in R3 is an expression of the form Adx +
Bdy + Cdz, where A, B and C are vectors representable in terms of the standard
basis as A = A1 i + A2 j + A3k, etc. Similarly, a vector-valued two-form in R3 is an
expression of the form Adx ∧ dy + Bdx ∧ dz+ Cdy ∧ dz, where terms such as dx ∧ dy

may be viewed as the often-used integration notation dxdy including the orientation
of the variables, according to the order x, y, z; so for example dx ∧ dy = − dy ∧ dx,
since the orientation of x, y, z is opposite to that of y, x, z. Now, an example of a
commonly used two-form is that associated with the differential of the surface area of
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a smooth surface in R3 (such as employed in equations (9) and (13) below); namely

dA =

∣∣∣∣∂x
∂u

× ∂x
∂v

∣∣∣∣ du ∧ dv,

where x = x i + y j + zk, u, v are parameters for the surface (so that x = x(u, v) at
least locally) and × denotes the standard cross-product. Consequently, the expression
ω =H ndA appearing in equations (8) and (9) is a vector-valued two-form.

The most direct way of showing that F = 0 when S is C2 is to observe that the
right-hand side of equation (8) can be written as the surface integral of a vector-valued
two-form

2 γ

∫
S

H n dA = 2γ

∫
S

ω (9)

where

ω = ω1 i + ω2 j + ω3k = H ndA, (10)

and verify that the two-form ω is exact, namely, there exists a vector-valued one-form

η = η1 i + η2 j + η3k (11)

on S such that

dη = dη1 i + dη2 j + dη3k = ω. (12)

Then, a simple application of Stokes’ theorem yields the desired result (Blackmore &
Ting 1985)

F = 2γ

∫
S

ω = 2γ

∫
∂S

η = 2γ

∫
∅
η = 0 (13)

Since S has an empty boundary, ∂S is equal to ∅, where ∅ is the standard
mathematical symbol used for the null set, not to be confused with the level-set
function φ defined earlier in the manuscript.

The vector-valued one-form η is given as

2 η = −n × dx = (〈n, k〉dy − 〈n, j〉dz)i + (〈n, i〉dz − 〈n, k〉dx) j

+(〈n, j〉dx − 〈n, i〉dy)k, (14)

where x =(x, y, z) = x i +y j +zk, × denotes the usual vector cross-product in R3, and
〈 · , · 〉 is the standard inner (dot) product of the vectors (Blackmore & Ting 1985).

It is natural to ask if equation (10) is still valid if the smoothness assumption on the
surface S of the bubble is weakened. In particular, what happens if S has an isolated
cusp-or cone-like point singularity or a line segment singularity? We show below that
equation (10) holds for surfaces with isolated cusp-like or cone-like singularities, but
an additional non-zero upward force due to surface tension occurs for a trailing-edge
singularity composed of a line segment.

5.4.4. Cusp and cone point singularities

Here, we consider singularities at the trailing end of the bubble that can be modelled
locally in the form (for z � 0):

z = αrq = α(x2 + y2)
q/2

(α > 0, q is a positive rational, 0 < q � 1) (15)

in a neighbourhood of the region (trailing point) in R3, as illustrated in
figure 25(a, b).

In the case under consideration, the bubble surface is smooth except at the origin,
so we can apply Stokes’ theorem to the portion Szo

of the surface S on or above the
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Figure 25. (a) Cone point at origin (q = 1). (b) Cusp point at origin (0 < q � 1).

plane z = zo(zo > 0). If zo is sufficiently small, it follows from equation (15) that the
plane z = zo intersects S in the planar curve

Czo
: x =

(zo

α

)1/q

cos θ, y =
(zo

α

)1/q

sin θ, z = zo (0 � θ � 2π). (16)

Note that we have chosen the orientation of Czo
to be consistent with the orientation

of Szo
. From equation (15) we compute that the unit outward normal to S in a small

neighbourhood of Czo
is

n =

[
x2 + y2 +

1

q2 α4/q
z2(2−q)/q

]−1/2 (
x i + y j − 1

qα2/q
z(2−q)/q k

)
. (17)

Now, from Stokes theorem and equations (14), (16) and (17), we compute that∫
Szo

H n dA =

∫
Szo

ω =

∫
Czo

η = −1

2

∫
Czo

n × dx

=
(zo

α

)1/q
[
1 +

1

q2α2/q
z2(1−q)/q

o

]−1/2

×
∫ 2π

0

{
− 2

qα3/q
z(3−q)/q

o cos θ i − 2

qα3/q
z3−q/q

o sin θ j −
(zo

α

)2/q

k
}

dθ

= −π
(zo

α

)−1/q
[
1 +

1

q2α2/q
z2(1−q)/q

o

]−1/2

→ 0 as zo → 0+. (18)

Accordingly, equation (13) also holds for a bubble having either a cone or a cusp
point singularity on its trailing edge.

5.4.5. Chisel type singularity

In this section we consider a bubble whose surface S has a whole line segment of
singular points (chisel edge) on its trailing edge as shown in figure 26.

For sufficiently small z(> 0), such a chisel-edge can be represented as follows:(
x

a + βz1/q

)2

+

(
y

βz1/q

)2

= 1, (19)
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Figure 26. Chisel edge along the x-axis.

where β > 0 and 0 <q � 1, as in equation 15. If zo > 0 is sufficiently small, it follows
from Equation 19 that the plane z = zo intersects in the ellipse

Czo
: x =

(
a + β z1/q

o

)
cos θ, y = β z1/q

o sin θ, z = zo (0 � θ � 2π) (20)

which has an orientation consistent with that of Sza
:= S ∩ {(x, y, z) : z � z0}.

Observe that when zo → 0+, the ellipse degenerates into a line segment |x| � a

on the x-axis coinciding with the singular chisel edge on the bubble surface. From
equation (19) we calculate the outward unit normal to S in a small neighbourhood
of the curve Czo

to be

n =

{
x2

(a + βz1/q)4
+

y2

(βz1/q)4
+

β2

q2
z2(1−q)/q

[
x2

(a + βz1/q)3
+

y2

(βz1/q)3

]2
}−1/2

×
{(

x

(a+βz1/q)2

)
i +

(
y

(βz1/q)2

)
j +

(
β

q
z(1−q)/q

[
x2

(a + βz1/q)3
+

y2

(βz1/q)3

])
k
}

.

(21)

Now, using equations (19)–(21) and Stokes theorem, we readily compute that for
small zo > 0, we have

Φ(zo) : =

∫
Szo

H n dA =

∫
Szo

ω =

∫
Czo

η = −1

2

∫
Czo

n × dx

=
1

2

{
cos2 θ

(a + βz
1/q
o )2

+
sin2 θ

(βz
1/q
o )

+
β2

q2
z2(1−q)/q

o

[
cos2 θ

(a + βz
1/q
o )

+
sin2 θ

(βz
1/q
o )

]2
}−1/2

×
∫ 2

0

{
−β

q
z1−q/q

o

[(
βz1/q

o

a + βz
1/q
o

cos3 θ + sin2 θ cos θ

)
i

+

(
cos2 θ sin θ +

a + βz1/q
o

βz
1/q
o

sin2 θ

)
j
]

−
[(

a + βz1/q
o

βz
1/q
o

)
sin2 θ

+

(
βz1/q

o

a + βz
1/q
o

)
cos2 θ

]
k
}

dθ. (22)
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We now calculate limz0→0+ Φ(zo) for the two cases: (i) 0 < q < 1 and (ii) q = 1. In
case (i), it is straightforward to show that

lim
z0→0+

Φ(zo) = −2ak (0 < q < 1). (23)

For q = 1, calculating the limit is slightly more complicated, but still routine. We
now sketch the computation. If we intersect the bubble near z = 0 with the plane
x = 0, we find from equation (19) that(

y

βz

)2

= 1 ⇒ y = ±βz,

and therefore conclude that the chisel edge is the edge of a symmetric wedge with
sides defined by y ± βz = 0 in R3. Observe that the normals for the sides of the wedge
are (1 + β2)−1/2( j − βk) for y − β z =0 and (1 + β2)−1/2(− j − βk) for y + β z = 0
and that when 0 < q < 1, the limiting normal directions are j and − j , respectively.
Consequently, in case (ii), we obtain

lim
z0→0+

Φ(zo) = − 2a√
1 + β2

k (q = 1). (24)

In either of the above two cases, we see that there is an unbalanced force on
the singular bubble due to surface tension, which must be balanced, according to
Newton’s third law, by an additional upward force on the bubble given by

F+ =

⎧⎪⎨
⎪⎩

4 γ a k (0 < q < 1).

4 γ a√
1+ β2

k (q = 1).
(25)

Therefore, the development of a chisel-edge singularity on the trailing end of the
bubble should be accompanied by an increase in the upward force (due to interfacial
tension) that acts on the bubble that is proportional to the width of the singular edge.

6. Discussion and concluding remarks
The transient and steady-state motions of bubbles rising in viscoelastic liquids

subjected to buoyancy were analysed using a three-dimensional finite-element-
based numerical scheme. The viscoelastic fluid was modelled using the Oldroyd-B
constitutive model and the level-set method was used to track the interface. The
results of the direct numerical simulations were then used to analyse the transient
behaviour of rising bubbles, the sharp increase in the terminal velocity in the velocity–
volume plot at a critical bubble volume, and the velocity and stress distributions in
the wake of the bubbles. These analyses were carried out for different values of the
polymer concentration parameter c, the relaxation time λr , and the bubble radius a,
while keeping other parameters such as the interfacial tension, density ratio, viscosity
ratio and the zero-shear viscosity constant.

Our simulation results indicate that a bubble released from rest first accelerates
and, once the viscoelastic stresses become significant, either decelerates until reaching
a constant terminal velocity or exhibits an oscillating velocity. After the viscoelastic
stresses become substantial, the bubble either assumes a steady shape or continues to
deform, depending on the choice of parameters. When the viscoelastic stresses at the
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interface are sufficiently large, the trailing end of the bubble is pulled out due to the
extensional nature of the viscoelastic stresses in this region, and when this happens
we find that the rise velocity of the bubble begins to increase again and reaches a
much larger steady value.

Furthermore, our simulations have shown that when the bubble volume is increased,
while keeping all other parameters constant, the bubble begins to deform from an
approximately spherical shape first to a prolate shape and then, at a critical volume,
to a shape with a cusp-like trailing end. When the terminal velocity is plotted as a
function of the bubble volume, a steep increase in the terminal velocity is observed
at the value of the bubble volume which coincides with the critical volume at which
the bubble develops an elongated cusp-like trailing end. The jump in the rise velocity
at the critical volume increases as the polymer concentration parameter c increases.
The capillary and Deborah numbers at which the bubble shape develops a cusped
trailing end are O(1).

Another interesting feature is that the flow pattern in the wake of a bubble rising in
a viscoelastic liquid is quite different from that in a Newtonian liquid. Specifically, in
the former case, for certain parameter values there is an additional vortex ring in the
surrounding flow, corresponding to the existence of a negative wake. Our numerical
and analytical results indicate that the asymmetric, cusped, bubble shape, the presence
of an additional vortex ring compared to the Newtonian case and the change in the
velocity field in response to the change in the bubble shape, all contribute to the
jump in the bubble velocity at a critical bubble volume for the appropriate parameter
range. Note that since the potential presence of surfactants is not considered here,
the jump in the rise velocity is not due to a surfactant effect in our calculations.

A sharp corner in the discretized problem, possibly corresponding to a cusp in the
physical problem, develops at the trailing end of the bubble because of the extensional
viscoelastic stresses. The bubble then reaches a steady state in which its shape is
maintained by a balance of the forces due to the surface tension and the viscoelastic
stresses at the trailing end. In simulations, after the bubble develops a trailing end
with a sharp corner, the integral of the surface tension force over the bubble surface is
no longer zero, resulting in an upward force which, however, remains small compared
to the buoyant weight (less than approximately 1% to 2% of the buoyant weight). As
noted in this paper, this would also be true if the bubble developed a two-dimensional
cusp-shaped trailing end. When the line segment representing the cusp-shaped, or a
sharp-cornered, trailing edge is in the (x, y)-plane (see figure 2), there is a net surface
tension force in the upward direction, i.e. the integral of the surface tension force over
the bubble surface is non-zero. The extensional viscoelastic stresses near the trailing
end cause the formation of the cusped, or cornered in the discretized case, trailing
edge.

It is, however, important to note that the additional surface tension force which
can arise due to the formation of a cusp- or corner-shaped trailing end is too small
to explain the large increase in the rise velocity. In order to show this, we consider
a bubble of radius 0.2 cm with a cusp-shaped trailing edge of width 0.05 cm, i.e. one
fourth of the bubble radius. The net surface tension force on this bubble in the upward
direction is 0.1σg ≈ 1.0 dyn, assuming that the surface tension is 10 dyn cm−1 which is
the value used in our simulations. If one neglects the bubble density compared with
the density of the ambient fluid, and assume that the latter is one, the buoyant weight
of the bubble takes the value (4πa3/3)ρLg ≈ 32.9 dyn. It results that, for a bubble
of this size, the additional surface tension force is only about 3% of the buoyant
weight, and thus not large enough to explain the observed large increase in the rise
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Figure 27. Sketch of a box-shaped control volume (front view marked ABCD) which encloses
the bubble. Because of the presence of the lower vortex ring, the fluid velocity at the bottom
of the control volume is in the downward direction, thus resulting in a negative wake.

velocity. If, on the other hand, the surface tension is 70 dyn cm−1, as is the case for
the air–water interface, it would be about 20% of the buoyant weight.

Furthermore, the jump in the rise velocity at higher values of c is much larger,
even though the additional surface tension force due to the formation of the cusp-
like trailing end remains approximately the same. This suggests that the global
modification in the velocity field in the ambient fluid, which is more substantial at
higher values of c, is probably the reason for the several-fold increase in the rise
velocity of the bubble.

We also point out that after the bubble develops a cusp-like trailing end, the shape
does not change significantly with the polymer concentration parameter c, whereas
the magnitude of the jump does vary significantly. The magnitude of the negative
velocity in the wake also increases with increasing c. This, again, indicates that the
flow modification, which is more substantial at higher values of c, is important in
determining the magnitude of the jump.

It is instructive to apply momentum conservation to a box-shaped control volume
enclosing the bubble and travelling with the bubble. In figure 27 the front view of this
control volume is marked by ABCD. In steady state, the sum of the net momentum
flux through the sidewalls, the forces acting on the control volume’s surface and the
body force must be equal to zero. In the case of a Newtonian fluid, the fluid velocity
at the bottom and top surfaces of this control volume is directed upwards and the net
momentum flux through these surfaces is determined by the difference in the velocity
magnitudes. In the case of a viscoelastic fluid, at the top of the control volume the
velocity is directed upwards, while the fluid velocity at the bottom, when a negative
wake is present, is directed downwards. Therefore, in the viscoelastic case, the net
momentum flux contribution to the control volume from the top and bottom surfaces
is guaranteed to be positive, which implies that the momentum flux from these two
surfaces results in a thrust in the upward direction. This, in a way, is similar to the
case of a jet engine where the thrust in the forward direction is generated by ejecting
gases at a fast speed in the direction opposite to the motion of the aircraft (Newton’s
third law); the difference is that in the present study the negative wake arises simply
due to the viscoelasticity of the fluid and does not require additional actuation. In the
present study, the upward thrust due to the momentum flux (because of the presence
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of the negative wake) is, of course, countered by the shear and normal forces acting
on the surface of the control volume.

The support of the National Foundation under grants 0626123 (P.S.) and 0626070
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